(1) FEASIBLE PATTERNS | KNURLING
PROFILE | KNURL | FEED
(Drawing.5)
F | | | | | |---------------------|-------|--------------------------|--|--|--|--| | Right version | | | | | | | | RAA | BR30° | ✓ | | | | | | RBR 30° | AA | ✓ | | | | | | Left version | | | | | | | | RAA | BL30° | ✓ | | | | | | RBL 30° | AA | ✓ | | | | | MFS 14 cut knurling tool is conceived to perform knurling on workpieces with diameters between 3 and 50 mm. ## (2) KNURL ASSEMBLY Loosen the screw that locks the axle of the knurl C.01 and removed it together with the knurl's washer P.01. Put the axle P.02 into the knurl, it is advisable that the bore of the knurl be cleaned before and graphite grease be spread. Place the washer P.01 above the knurl. Firmly tighten the knurl and the washer through the screw C.01, make sure that the knurl runs free. # (3) ADJUST THE ANGLE OF THE HEAD The lower face of the head P.04, must be parallel to the upper face of the shank. If it is necessary to change the inclination, loosen the screw C.04 on the tool head without removing it. Adjust the angular position using C.03 screws until the head P 04 is in the desired position Secure the head P.04 again tightening C.04 screw. #### (4) HEAD ASSEMBLY FOR LEFT OR RIGHT VERSION MFS14 tool model is reversible. Just turning over the head we will get the right or left version of it. To turn the head over, we must proceed as we describe below: - Slightly loosen adjusting stud screws C.03. - Loosen and take out the head fixing screw C.04. - Turn 180° the head keeping in mind that the longest base is the one that has to remain in contact with adjusting stud screws. - Place screw C.04 again into its housing and tighten firmly. - Tighten stud screws C.03 up to contact the head. #### (5) KNURLING ON STEPPED WORKPIECES On stepped workpieces, it is not possible to knurl all the cylinder up to the shoulder. Depending on the diameter of the knurls, in order to avoid the tool ramming smack against the workpiece and/or mechanical parts on the machine, the following minimum distances have to be taken into account: | | Ø14.5 | |---|-------| | а | 8 | | Α | 5 | | b | 4 | | В | 4 | | С | 3 | | C | 3 | | d | 2 | | D | 2.5 | ### (6) BEGINNING TO KNURL With the chuck rotating according to the conditions recommended in table 1, move the tool until the knurling wheel is positioned in the corner of the workpiece with only 1/3 of the width of the knurling wheel on the workpiece and 2/3 in the air. Once the knurl contacts the piece, plunge until the desired depth is got, by no means plunge in the beginning more than $45 \div 48$ knurl's pitch being used. When the knurling is being performed, we realize that there is an angular misalignment and that misalignment does not exceed 5° , we correct the position of the head as it is explained on section 3. We feed longitudinally following the parameters shown on the table 1. Drawing.5 # (7) BEAR IN MIND BEFORE AND WHILE WORKING PROCESS Make sure that the knurl pins are firmly fastened. Make sure that the axis of the knurl is aligned with the axis of the workpiece. Always work plenty of coolant, lubricant or cutting oil. The working direction, longitudinal advance, will always be against the tool. #### (8) TROUBLE SHOOTING | PROBLEM | CAUSE | SOLUTION | | | |-----------------------------------|--|--|--|--| | Double knurling | Too slow radial feed at
the beginning of the
knurling | Increase radial feed at the beginning of the knurling* | | | | Double knurling - | The perimeter of the workpiece is not an exact multiple of the pitch | Turn a diameter so that the perimeter to be knurled is an exact multiple of the pitch* | | | | Knurling wheels easily breakable | Knurling too deep | Reduce the depth to values according to the pitch | | | | Knurling wheels wear out too fast | Knurling too deep | Reduce the depth to values according to the pitch | | | | | Working conditions are not adequate | Check cutting speed and traverse feeding speeds | | | ^{*} Sometimes, it is not possible to increase radial feed or it just cannot be radially fed in the workpiece is too weak. # 9 RECOMMENDED SETTINGS | MATERIAL | Ø
WORKPIECE
(mm) | Ø KNURL
(mm) | SPEED | RADIAL FEED
(mm/rev) | TRAVERSE FEED
PITCH (mm) | | | | |-----------------------------|------------------------|-----------------|-------|-------------------------|-----------------------------|---------|---------|---------| | | | | | (IIIII/IEV) | 0.3÷0.6 | 0.6÷1.2 | 1.2÷1.6 | 1.6÷2.0 | | Steel 600 N/mm ² | 10÷50 | 14.5 | 35÷55 | 0.05÷0.10 | 0.20 | 0.15 | 0.13 | 0.10 | | Steel 900 N/mm ² | 10÷50 | | 20÷40 | 0.04÷0.08 | 0.15 | 0.10 | 0.08 | 0.06 | | Stainless steel | 10÷50 | | 20÷40 | 0.04÷0.08 | 0.15 | 0.10 | 0.08 | 0.06 | | Cast steel | 10÷50 | | 35÷55 | 0.05÷0.10 | 0.20 | 0.15 | 0.13 | 0.10 | | Aluminium | 10÷50 | | 55÷75 | 0.05÷0.10 | 0.20 | 0.15 | 0.13 | 0.10 | | Brass | 10÷50 | | 40÷60 | 0.05÷0.10 | 0.20 | 0.15 | 0.13 | 0.10 |